suma de vectores, fisica,geometria, matematicas, problemas, ejercicios, envio email solucion, matematicas y fisica problemas de matematicas,ejercicios ejercicios de fisica,problemas resueltos curriculum docente honorarios soluciones contacto profesor metodo pago resolucion problemas matematicos y fisica

Suma de Vectores. Método Analítico

Suma de Componentes
La suma gráfica de vectores con regla y transportador a veces no tiene la exactitud suficiente y no es útil cuando los vectores están en tres dimensiones.

Sabemos, de la suma de vectores, que todo vector puede descomponerse como la suma de otros dos vectores, llamados las componentes vectoriales del vector original. Para sumarlos, lo usual es escoger las componentes sumando a lo largo de dos direcciones perpendiculares entre sí.

email

Ejemplo Suma Vectores: suponga un vector V cualquiera

Trazamos ejes coordenados x y con origen en la cola del vector V. Se trazan perpendiculares desde la punta del vector V a los ejes x y y determinándose sobre el eje x la componente vectorial Vx y sobre el eje y la componente vectorial Vy.

Notemos que V = Vx + Vy de acuerdo al método del paralelógramo.

Las magnitudes de Vx y Vy, o sea Vx y Vy, se llaman componentes y son números, positivos o negativos según si apuntan hacia el lado positivo o negativo de los ejes x y y.

Notar también que Vy = Vsen y Vx = Vcos

Suma de Vectores Unitarios
Frecuentemente las cantidades vectoriales se expresan en términos de unitarios. Un vector unitario es un vector sin dimensiones que tiene magnitud igual a uno. Sirven para especificar una dirección determinada. Se usan los símbolos i, j y k para representar vectores unitarios que apuntan en las direcciones x, y y z positivas, respectivamente.

Ahora V puede escribirse
V = Ax i + Ay j
Si necesitamos sumar el vector A = Ax i + Ay j con el vector
B = Bx i + By j escribimos
R = A + B = Ax i + Ay j + Bx i + By j = (Ax + Bx)i + (Ay + By)j
Las componentes de R (=A + B) son Rx = Ax + Bx y Ry = Ay + By

Suma Grafica, Ir a Pagina Inicio

 

Problema Ilustratorio
El siguiente ejercicio es para aclarar el uso de vectores unitarios en este método analítico.

Un auto recorre 20 km hacia el Norte y después 35 km en una dirección 60º al Oeste del Norte. Determine magnitud y dirección del desplazamiento resultante del auto.

Hacemos un diagrama:

Expresando los dos desplazamientos componentes como A y B, indicados en la figura, y usando unitarios, tenemos:
R = A + B. R es el vector resultante buscado, cuya magnitud se
denota y cuya dirección puede determinarse calculando el ángulo .
A = 20 km j, (apunta hacia el Norte).
B debemos descomponerlo en componentes x e y (ó i y j )

B = -(35 km)sen60ºi + (35 km)cos60ºj = -30.3 kmi + 17.5 kmj

Luego,
R = 20 kmj - 30.3 kmi + 17.5 kmj = 37.5j - 30.3i.
La magnitud se obtiene de

2 = (37.5km)2 + (30.3km)2 = 48.2 km

La dirección de R la determinaremos calculando el ángulo .
En el triángulo formado por cateto opuesto 30.3 y cateto adyacente 37.5, tg = 30.3/37.5 = arctg(30.3/37.5) = 38.9º.

Otros Sitios de Fisica:
Problemas de FisicaEjercicios y Tareas de FisicaCaida LibreTermodinamicaTercera Ley TermodinamicaEnergiaEnergia CineticaPotenciaEnergia PotencialLey de CoulombLey de Coulomb, EjemploElectricidad y MagnetismoElectricidad EstaticaCampo ElectricoEjercicio Campo ElectricoLeyes de NewtonSegunda ley de NewtonFuerzas de FriccionDiagrama Cuerpo Libre

Web Social



Bookmark and Share